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We have obtained a new form for the equations of morion of  both holonomic as 
well as nonholonomic ~/stems. In a special case these equations reduce to the 
Mangezon-Deleanu equations [ I  - 3] .  

l .  The equations of  morion of  a rheonomic-holonomic  mechanica l  sysmm with n 
degrees of  freedom, generalized coordinates qz . . . . .  qn, kinetic energy T = T (t, q~, 
q/) , and generalized forces Qj = Qj (t, qr, qr) can be written in the form [1]  

t OT (p) p -~ i 0T = QJ (i.i) 

p Oq~p) p aq) 

T(P)~, , q~P)_ dtp , p = t ,  2 . . .  

H e r e  and  b e l o w  r, ] = 1, . . . ,  n, ~ = t ,  . . . ,  m,  ×, ~., ~ = t . . . . .  g: in what follows stun- 
marion over repeated subscripts is to be understood. Using an identity from [1]. which 

the kinet ic  energy satisfies. 0T ----- l I 0T(s) OT(P) ] 

( p = b s ; P = i , 2  . . . .  ; s =  0,i ,2 . . . .  ) 

the equations of  motion (1.1)  can be written as 

zj(r) = Q~, zj(r)- p,_, ~(i + , ) ~ - ( i  + p ) ~ j  (i2) 

From this general ized form of La~ange  equations of  second kind we can obta in :  for 
s , -  0 ,  the MangercB-Deleanu equations ( I .  1). for s = O and p = i o the Nieken equa-  
t iom [4], and for s = 0 and p==2 , the Tsenov (Tz~noff) equations [5].  

Suppose that the generalized forces have the form 
Qj = - -  OV/dqj  - -  O~/dq" l (1.3) 

where V (t, qj) is the potential  energy and ~ (t, q), q/) is the damping function. It can 

be shown char OV OV (') 0~  0 0  (p'z) _ _  [ p = i ,  2 . ,  
• aqi~,) \ ,  = O, i ,  2 . . /  Oq i "Oq~ s) , Oq i . 

Using these identities and (1.3) the equations of morion (1.2) reduce to 

i [ OL (p) OL (s) ] 
+ 

( p ~ s ;  p =  t , 2  .. . ;  s =  i , 2  . . . .  ) 

where 
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t 

L=T-- V - - S ~ d t  (t.,5) 
0 • 

is a general ized Lagrange function. 

2 .  Let us assume that a mechanica l  system is nonholonomic and that its motion is 
cons~ained by g nonholonomtc com~ainr~ of  the form 

. ( ~  ~(k+,> . . . .  q ~  o (2.t) P~j (t, qr . . . . . .  r - -~  H-F~ (t, qr, --- 

w h e r e  k is an integer (k ~ 1). These nonholonom/c c o m ~ a / n ~  are linear relative 
the highest t ime derivative of  the general ized coord ina te .  Such a mechanica l  system 
has m = , - -  g degrees of  freedom. Amume that qt are the independent generalized 
coordinates, and qm+v, the dependent ones. From sysmm (2 .1)  with g e q u a t i o n  we can 
obtain the relations 

q(~+z) It, qj . . . . .  ql ~) q~+~)+ =v (t, q~ . . . . .  @~b (2.2) m+v  ~ :  ~vi " ' 

Using the resul~ of  this papeL as well as of  [6], we can show that the equations of  m o -  
r o n  of  a mechanica l  system with g nonholonomic con ,~a in~  (2.2)  of  ( k -4- t )-st order 

have the form Z i (T) - -  Q~ = -- ,k~,,i 

Zm+ " (I") - -  Q , , + ,  = ~., (2.3) 

where ~,,, are undemrmined Lagrange multipliers and Z s ( r)  are determined by the second 
relaUon in (1 .  2) .  From ( 2 . 3 )  and ( 1 . 4 )  wi th  s = k + I, p =, k "4- 2 we obmln 

f S L  ~+"-) OL ''+~) ) / OL <~+z) 0L (~+z)) 

For the ( ~-~- I )-st t ime deriva~/ve of  the generalized Lagrange fimctlon we obmin 

L (~+z) = L (~+z) (t, q~ . . . .  m+v, ~m+v , 

Eliminating the dependent ( k +  1 )-st derivatives =m+~"(~+z) of  the general ized coc~dlnar~ 
with the aid of  the conauaint  Eqs. (2.2) ,  we have 

.(~+i) .(~+i) q!~+z), ,,(~+~h (2.5) L~ ~z) (t, . . . ,  -i°(t~+z)' ~°(~+~), ~m+vn(k+s)~- = L(~+I) (t, • • •. '~ , 'tm+v , ~m+v, 

By a total t ime differentiation of  e x l ~ i o n  (2. 2) we obtain 

( ~+z (2.6) 

From (2.2) .  (2. 5) and (2 .6)  follows 

OL. " OL (~+z) Oqrn+, , ~ oqm+v 

• L , m + , ,  ° q r a + v  ~ O q i  ~ r a + x  

OL(~+z) OL(~+z) 
aq~+z ) + %~ -~,,,+,ao(~'+z ~ (2.7) 

From the way in which the function L (~+I) was obtained fzom the function L (~+~) it is 

clear that 
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OLeO+x) OL {~+x) 

Then, with due regard to (2. 7), we get 

OL(~+I) 0L{~+x) OL(~+I) 
aq~X+~ ) = aq~+~..----- ~ + =,,, ao(~+x ) ¢2.8) 

= ? n ÷ v  

The foUowing relation is derived aaalogomly : 

OL(~+s) OL (~+~) OL(¢+~) 
Oq} x+i) = ~ O q {  + :%1 ~a.m+ v (2.9) 

.(k+~) where the function _,r(~+2) is obtained by el iminat ing the dependent derivatives ~m+v 
in the function L (k+2* by means of  constraints (2.6) .  From (2.8).  (2. 9) and (2 .4)  we 
obtain the generalized form of the Lagrange equations of second kind for mechanica l  
systems with nonholonomic comtraints of  ( k + t )- th order (k ~ t) 

OL(~+2) az(k+x) 
(k + 2 ) ~  - (k + s ) ~  = o (2.~o) 

These m equations together with the g nonholonomic constraint Eqs. (2 .2)  form a c o m -  
plete system of  n equations for the determination of  the n generalized coordinates qj 
as functions of  t ime.  

8 .  |xample. A material  point of  mass m moves in a gravitational field (g i s the  
accelerat ion due to gravity) in the presence of AppeU's [7] nonlinear nonholonomic con-  
straint of flrs~ order z-z 

z'~ + y ' ~ - - - - ~ .  ---- 0 Ca = const) (3.t) 

where z, y, z are the Cartesian coordinates of  the material  point. By a t ime differ- 

entiation of  the f ir~-order nonlinear constrain¢ (3 .1)  we obtain a second-order quasilinear 
nonholonomic constrain~ z" 

z'z '" + y'y'" - -  a-- i- z'" ---- 0 (3.2) 

Here k = i ,  "¢ = t, n = 3, the number of  degrees of  freedom m = 2, the Lagrange 
function is L = "~ (z "~ + y'~ + z "~) - -  mgz (o.o) 

and the equatiom of motion (2.10) become 

aL('3~ - -  4 aL¢*2) 
3 oq~a ) ~ = 0  (3.4) 

Let = and y be the independent coordinates and let z depend on them. By a t ime 
differentiation of Eq. (3 .2)  we obtain 

z(a) ~ a_~2 (.xCa, + y .y(3)+ (x(~)), + (y(,),, (=(=))~. ~ --  - ' U - - /  (3.5) 

By a t ime differentiation of  the Lagrange function (3. S) and by substituting far z (2~ and 
z ¢3) their values from (3. 2) and (3.5) .  we obtain 

~ (22 • . 

L.('*) = m {3 (z(¢)x Ca) "]- y(a)y(a)) + a"- / z" (z 'z {s) -~- y" y(a)) (3=tH _ g)} 2_ . . . (:~.7) 
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Here we have omitted the terms not containing the second derivatives of the generalized 
coordinates in expression (3.6) and the third derivatives in expression (3 .3) .  From (3.6), 
(3.3) and (3.4) we obtain the equations of motion in the independent generalized coor- 
dinates x and y 

z¢~ + a2 ~ (z~) + ~)--- 0, ~c~ + a~ ~- ('~ + ~):= 0 
Z" 

They agree with the equations of motion obtained in [8] by another method. 
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We study a linear and a perturbed system ; in the latter the argument is trans- 
formed. Under the assumption that the trivial solution of the linear s ~ m  is 
stable, we ascertain the conditions under which the trivial solution of the perturbed 
system also will be stable. 

Let ! ( t , ~ ) = ! ( t , ~ l , ~ : , . . . ~ ) ( k =  1,2 . . . . .  p), where ],~1,~2 .. . . .  ~p are m-dimen- 
sional vectors. We consider the following two ruth-order systems : the linear one 

,j' = A Ct) y (1) 
and the perturbed one (see [1]) 


